UNTERER SOMMERWALDWEG 1 6 6 9 5 3 P I R M A S E N S TEL: +49 (0)6331 5547- 0 FAX: +49 (0)6331 5547-29 MAIL: INFO@INGENIEURBUEROTHIELE.DE

Gutachten 21716_2

Produktbezeichnung: MKT Bolzenanker B im Brandfall

Produktfamilie: Metallspreizdübel

Verfasser des Gutachtens

Jun.-Prof. Dr.-Ing. Catherina Thiele

Ingenieurbüro Thiele GmbH

Unterer Sommerwaldweg 1

66953 Pirmasens

Mail: catherina.thiele@ingenieurbuerothiele.de

Dieses Gutachten enthält: Feuerwiderstände für ungerissenen Beton

Datum der Fertigstellung 2.5.2017

Gültigkeitsdauer 5 Jahre

Seiten 4

Inhaltsverzeichnis

1.	Allgmeines	3
2.	Literaturverzeichnis	3
3.	Produktbeschreibung	3
4.	Umfang der Auswertung	3
5.	Feuerwiderstände	4

1. Allgmeines

MKT GmbH & Co. KG beauftragte das Ingenieurbüro Thiele mit der Bewertung des Feuerwiderstands des Bolzenankers B und BA4. Basis dieses Gutachtens sind Prüfberichte der MPA Braunschweig und der TU Kaiserslautern. Die darin beschriebenen Brandversuche und Auswertungen wurden unter Berücksichtigung von DIN EN 1363-1:2012 [2] und in Anlehnung an [1] durchgeführt.

Die im Folgenden genannten Feuerwiderstände berücksichtigen ausschließlich eine einseitige Brandbeanspruchung. Die Auswertung erfolgte in diesem Gutachten in Anlehnung an den TR 020 [1]. Voraussetzung für die Anwendung des Bemessungskonzeptes nach TR 020 ist jedoch die Verwendung eines zugzonentauglichen Dübels. Diese Voraussetzung erfüllt der Bolzenanker B bzw. BA4 nicht. Je nach Bemessungssituation muss überprüft und bewertet werden, ob das in TR 020 angegebene Bemessungsverfahren angewendet werden darf.

2. Literaturverzeichnis

- [1] Evaluation of Anchorages in Concrete Concerning Resistance to fire, EOTA TR 020, Edition May 2004
- [2] Feuerwiderstandsprüfungen Teil 1: Allgemeine Anforderungen, DIN EN 1363-1; Edition Oktober 2012
- [3] Prüfung und Beurteilung von in ungerissenen Stahlbetonbauteilen gesetzte, auf zentrischen Zug belasteten MKT Bolzenankern B auf Brandverhalten zur Ermittlung des Feuerwiderstandes bei einseitiger Brandbeanspruchung; (3738/395/11) CM vom 14.3.2012; MPA Braunschweig.
- [4] ETA-01/0013 vom 30. Januar 2015, MKT Bolzenanker B
- [5] Bericht über Versuche mit MKT Bolzenankern M8 A4 und M12 A4 unter Brandbeanspruchung nach TR 020, Bericht 12035CT/15; TU Kaiserslautern; 11.11.2013.
- [6] 21716_1 Gutachten MKT Bolzenanker B und BA4 im Brandfall, Ingenieurbüro Thiele GmbH, 2.5.2017.

3. Produktbeschreibung

Das Produkt ist in [4] beschrieben.

4. Umfang der Auswertung

Die Bewertung des Feuerwiderstands des Bolzenankers B und BA4 erfolgt auf Basis von Brandversuchen. Die Dübel wurden dabei in Deckenposition montiert und durch die Einheits-Temperatur-Brandkurve (ETK) nach [2] beansprucht. In allen Brandversuchen wurde ein Anbauteil in Anlehnung an TR020 [1] verwendet, daher gilt die nachfolgende Bewertung des Feuerwiderstands nur für Anker die in vergleichbarer Weise vom Temperatureintrag durch den Brand geschützt sind.

Die Brandversuche wurden in ungerissenem Beton durchgeführt.

Die Auswertung wurde in Anlehnung an TR020 [1] durchgeführt. Bei allen Versuchen wurde entweder ein Versagen der Mutter oder ein Reißen des Konusbolzens im Gewindebereich beobachtet. Die Versagensart Herausziehen wurde nicht beobachtet.

5. Feuerwiderstände

Die im Folgenden angegebenen Feuerwiderstände für den Bolzenanker B und BA4 wurden nach TR 020 ermittelt und der maßgebende Wert aus den unterschiedlichen Versagensarten wird ausgewiesen. Bei der Versagensart Betonausbruch wurde davon ausgegangen, dass sich der Betonausbruch vollständig ausbilden kann. Es wurden keine Einflüsse von Rand- und Achsabständen berücksichtigt. Eine Darstellung der Feuerwiderstände für die verschiedenen Versagensarten ist [6] zu entnehmen.

In den folgenden Tabellen sind die maßgebenden Feuerwiderstande $N_{Rk,fi}$ für eine einseitige Brandbeanspruchung für Zugbelastung in ungerissenem Beton angegeben. Die angegebenen Feuerwiderstände gelten für Einzeldübel mit einem Randabstand größer c_{cr} =2 h_{ef} und einem Achsabstand zum benachbarten Dübel von 2 c_{cr} = 4 h_{ef} .

Sofern der Randabstand c so groß gewählt wird, dass Stahlversagen auftritt, können die im Folgenden angegebenen Lastwerte auf querbeanspruchte Dübel übertragen werden.

Tabelle 1: Feuerwiderstand N_{Rk,fi} für B mit reduzierter Verankerungstiefe

Feuerwiderstand N _{Rk,fi} in [kN]								
B h _{ef,red}		M6	M8	M10	M12	M16	M20	
[min]	h _{ef,red}	30	35	42	50	64	78	
30	[mm]	0,6	0,8	1,8	3,2	4,6	6,2	
60		0,5	0,7	1,5	2,8	4,6	6,2	
90		0,3	0,6	1,0	1,7	3,2	5,0	
120		0,3	0,5	0,8	1,2	2,3	3,6	

Tabelle 2: Feuerwiderstand N_{Rk,fi} für B mit Standardverankerungstiefe

Feuerwiderstand N _{Rk,fi} in [kN]								
B h _{ef}		M6	M8	M10	M12	M16	M20	
[min]	h _{ef}	40	44	48	65	82	100	
30	[mm]	0,6	0,8	1,8	3,4	6,3	9,0	
60		0,5	0,7	1,5	2,8	5,2	8,2	
90		0,3	0,6	1,0	1,7	3,2	5,0	
120		0,3	0,5	0,8	1,2	2,3	3,6	

Tabelle 3: Feuerwiderstand N_{Rk,fi} für B A4 + HCR mit reduzierter Verankerungstiefe

Feuerwiderstand N _{Rk,fi} in [kN]								
B A4 +HCR h _{ef,red}		M6	M8	M10	M12	M16	M20	
[min]	h _{ef,red} [mm]	30	35	42	50	64	78	
30	[!!!!!]	0,9	1,3	2,1	3,2	4,6	6,2	
60		0,9	1,3	2,1	3,2	4,6	6,2	
90		0,9	1,3	2,1	3,2	4,6	6,2	
120		0,7	1,0	1,6	2,5	3,7	5,0	

Tabelle 4: Feuerwiderstand N_{Rk,fi} für B A4 + HCR Standardverankerungstiefe

Feuerwiderstand N _{Rk,fi} in [kN]								
B A4 + HCR h _{ef}		M6	M8	M10	M12	M16	M20	
	h _{ef}							
[min]	[mm]	40	44	48	65	80	100	
30		1,8	2,3	2,9	6,1	6,4	9,0	
60		1,4	2,3	2,9	6,1	6,4	9,0	
90		0,9	2,1	2,9	4,8	6,4	9,0	
120		0,7	1,0	2,2	3,9	5,2	7,2	

Datum: 2. Mai 2017

Jun.-Prof. Dr.-Ing. Catherina Thiele

Auswertebericht MKT – Feuerwiderstand Bolzenanker B